

Mathematische Grundlagen der Informatik I

WS 2003/04 — Übung 6 — 25.11.2003 Abgabe: 02.12.2003

Aufgabe 19 (IEEE Gleitkomma-Format)

(4 Punkte)

- a) Geben Sie die *IEEE single precision* Darstellungen der Dezimalzahl 0.6 (vgl. Aufgabe 16c) für alle vier verschiedenen Rundungsverfahren an. Wie groß ist jeweils abserr(0.6) ?
- b) Geben Sie die folgenden gerundeten Summen bei Rundung zur nähesten Gleitkommazahl im binären *IEEE single precision* Format an: $64+2^{20}$, $64+2^{-20}$, $32+2^{-20}$, $16+2^{-20}$, $8+2^{-20}$.

Wie verändern sich die Resultate bei Aufrundung?

Aufgabe 20 $(1 + \frac{1}{2} + \frac{1}{3} + \cdots)$

(8 Punkte)

- a) Die Summe $\sum_{n=1}^{\infty} \frac{1}{n}$ soll mit Hilfe einer Fixpunktarithmetik mit (nur) einer dezimalen Nachkommastelle berechnet werden, die darstellbaren Zahlen haben also die Form $x=\pm\sum_{i=-1}^k a_i\cdot 10^i$.
 - Berechnen Sie alle nichtverschwindenden Summanden $\frac{1}{n}$ (dabei sollen alle Zahlen abgerundet werden, z.B. würde $\frac{2}{3}$ als 0.6 gerechnet) und deren Summe.
- b) In einer Gleitpunktdarstellung mit einer dezimalen Stelle haben alle darstellbaren Zahlen die Form $x=\pm (0.d)_{10}\cdot 10^e$.

Berechnen Sie die notwendigen Summanden $\frac{1}{n}$, n=1,2,3,... bezüglich dieser Darstellung und Rundung zur nähesten Zahl, und addieren Sie so viele (in der Reihenfolge $1,\frac{1}{2},\frac{1}{3},...$) mit jeweiliger Rundung des Zwischenergebnisses, bis sich die Summe nicht mehr ändert.

Aufgabe 21 (4 Punkte)

Beweisen Sie, dass die Summe $\sum_{n=1}^{\infty} \frac{1}{n}$ nicht endlich ist (bei exakter Rechnung).

- a) Zeigen Sie dazu zunächst, dass für jedes $m \in \mathbb{N}$ gilt: $\sum_{n=m+1}^{2m} \frac{1}{n} > \frac{1}{2}$.
- b) Zeigen Sie mit Hilfe von a) dann: $\forall s \in \mathbb{N} \ \exists \ r \in \mathbb{N} : \sum_{n=1}^r \frac{1}{n} > s.$