



# Mathematische Grundlagen der Informatik I

WS 2003/04 — Übung 8 — 16.12.2003 Abgabe: 06.01.2004

# Aufgabe 25 (Permutationen)

(4 Punkte)

Sei  $m \in \mathbb{N}$  und  $M = \{1, \dots, m\}$  die Menge der ersten m natürlichen Zahlen.

Die bijektiven Abbildungen  $p:M\to M$  beschreiben Vertauschungen der Reihenfolge dieser Zahlen. Eine solche Vertauschung nennt man Permutation. Man beschreibt eine Permutation p öfters durch

$$p = \begin{pmatrix} 1 & 2 & 3 & \cdots & m \\ p(1) & p(2) & p(3) & \cdots & p(m) \end{pmatrix}.$$

 $S_m$  bezeichne die Menge der Permutationen von M und  $\circ$  die Hintereinanderschaltung von Permutationen,  $(p_1 \circ p_2)(x) := p_1(p_2(x))$ .

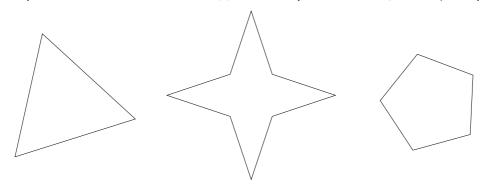
Zeigen Sie, dass  $(S_m, \circ)$  eine Gruppe ist.

 $(S_m, \circ)$  heißt die *symmetrische Gruppe* mit m Elementen.

Ist  $(S_m, \circ)$  eine abelsche Gruppe?

Aufgabe 26 (4 Punkte)

Zeigen Sie, dass die Drehungen, die einen symmetrischen Stern oder ein Polygon mit m Spitzen (so wie unten) in sich überführen, eine Gruppe bilden. (Sie ist isomorph zu  $\mathbb{Z}/m\mathbb{Z}$ .)



## Siehe Seite 2 zur Definition von Ring und Polynomring

## Aufgabe 27 (Restklassenring)

(4 Punkte)

Sei  $m \in \mathbb{N}$ . Zeigen Sie, dass  $(\mathbb{Z}/m\mathbb{Z}, \oplus, \otimes)$  ein kommutativer Ring ist.

## Aufgabe 28 (Polynomring)

(4 Punkte)

Sei  $(R, +, \cdot)$  ein kommutativer Ring.

Beweisen Sie, dass dann  $(R[X], +, \cdot)$  ein kommutativer Ring ist.

Zeigen Sie dazu zunächst, dass durch die entsprechenden punktweisen Verknüpfungen zwei Abbildungen  $+: R[X] \times R[X] \to R[X]$  und  $\cdot: R[X] \times R[X] \to R[X]$  definiert werden.

#### 4.6 Definition

Ein **Ring** ist ein Tripel  $(R, \oplus, \otimes)$  bestehend aus einer Menge R und zwei Verknübfungen  $\oplus, \otimes$  auf R, für die folgende Eigenschaften gelten:

- (R1)  $(R, \oplus)$  ist eine kommutative Gruppe,
- (R2)  $(R, \otimes)$  ist assoziativ, das heißt  $a \otimes (b \otimes c) = (a \otimes b) \otimes c$  für alle  $a, b, c \in R$ ,
- (R3)  $(R, \oplus, \otimes)$  ist distributiv, das heißt für alle  $a, b, c \in R$  gilt  $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$  und  $a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c)$ .

Falls zusätzlich gilt

(R4)  $(R, \otimes)$  ist kommutativ, das heißt  $a \otimes b = b \otimes a$  für alle  $a, b \in R$ ,

so heißt  $(R, \oplus, \otimes)$  ein **kommutativer Ring**.

#### 4.8 Definition

Sei  $(R, +, \cdot)$  ein Ring und  $a_0, a_1, \ldots, a_n \in R$ . Die Abbildung

$$p: R \to R, \qquad x \mapsto a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

heißt **Polynom über** R.

Ist  $a_n \neq 0$  (0 = neutrales Element bzgl. +), so heißt n der **Grad** von p.

#### 4.9 Definition

Sei  $(R,+,\cdot)$  ein Ring. Die Menge aller Polynome über R wird mit R[X] bezeichnet. Mit den punktweisen Verknüpfungen

$$(p+q)(x) := p(x) + q(x), \qquad (p \cdot q)(x) := p(x) \cdot q(x)$$

heißt  $(R[X], +, \cdot)$  der **Polynomring über** R.