

Mathematische Grundlagen der Informatik I

WS 2003/04 — Übung 9 — 06.01.2004 Abgabe: 13.01.2004

Zur Definition von Ringen (Achtung: Berichtigung!) und Körpern siehe Seite 2.

Aufgabe 29 (Rechnen in Restklassenringen/-körpern)

(4 Punkte)

- a) Lösen Sie in $\mathbb{Z}/4\mathbb{Z}$ die Gleichungen 3+x=1 und 2-y=3.
- b) Lösen Sie in $\mathbb{Z}/7\mathbb{Z}$ die Gleichungen 3+a=1, 3-b=4, $3\cdot c=1$ und $3\cdot d=2$.
- c) Bestimmen Sie in $\mathbb{Z}/5\mathbb{Z}$ und $\mathbb{Z}/6\mathbb{Z}$ alle Lösungen der Gleichung $2 \cdot x = 4$.

Aufgabe 30 (Rechnen in Polynomringen)

(4 Punkte)

Seien $r(x) = 2x^2 + 2x + 3$ und $s(x) = x^3 + 2$.

- a) Berechnen Sie in $(\mathbb{Z}/4\mathbb{Z})(X)$ das Produkt $p=r\cdot s.$
- b) Lösen Sie in $(\mathbb{Z}/4\mathbb{Z})(X)$ die Gleichung r+q=s.

Aufgabe 31 (Restklassenkörper)

(4 Punkte)

- a) Überprüfen Sie, dass $(\mathbb{Z}/7\mathbb{Z}, \oplus, \otimes)$ ein Körper ist.
- b) Zeigen Sie (durch Gegenbeispiel), dass $(\mathbb{Z}/6\mathbb{Z}, \oplus, \otimes)$ kein Körper ist.

Aufgabe 32 (4 Punkte)

Zeigen Sie, dass die komplexen Zahlen $(\mathbb{C},+,\cdot)$ einen Körper bilden. Die Addition bzw. Multiplikation zweier komplexer Zahlen a+ib und c+id sind dabei definiert als

$$(a+ib) + (c+id) = (a+c) + i(b+d),$$
 $(a+ib) \cdot (c+id) = (ac-bd) + i(ad+bc).$

4.6 Definition — Berichtigung, siehe (R3)

Ein **Ring** ist ein Tripel (R, \oplus, \otimes) bestehend aus einer Menge R und zwei Verknüpfungen \oplus, \otimes auf R, für die folgende Eigenschaften gelten:

- (R1) (R, \oplus) ist eine kommutative Gruppe,
- (R2) (R, \otimes) ist assoziativ, das heißt $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ für alle $a, b, c \in R$,
- (R3) (R, \oplus, \otimes) ist distributiv, das heißt für alle $a, b, c \in R$ gilt $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ und $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$.

Falls zusätzlich gilt

(R4) (R, \otimes) ist kommutativ, das heißt $a \otimes b = b \otimes a$ für alle $a, b \in R$,

so heißt (R, \oplus, \otimes) ein **kommutativer Ring**.

4.10 Definition

Ein **Körper** ist ein Tripel (K, \oplus, \otimes) bestehend aus einer Menge K und zwei Verknüpfungen \oplus, \otimes auf K mit folgenden Eigenschaften:

- (K1) (K, \oplus, \otimes) ist ein kommutativer Ring.
- (K2) Es gibt ein Element 1 ("Einselement") in K mit $1 \otimes a = a$ für alle $a \in K$.
- (K3) Für jedes $a \in K \setminus \{0\}$ gibt es genau ein Element $a^{-1} \in K$ mit $a^{-1} \otimes a = 1$. Dabei bezeichnet $0 \in K$ das neutrale Element zu \oplus (das "Nullelement").